Safety Measures for SKYBUS

 

Skybus

Several safety features, which are developed as technology initiatives for Konkan Railway operation and also innovative developments made specifically for SkyBus Metro, are given below.

 

1.     DERAILMENT ARRESTERS

The bogies are equipped with Derailment Arresters. The Derailment Arresters, which are instrumented solid rubber wheels, are connected to the 20 journals of the wheel sets of bogies projecting upwards (inside the concrete structure) leaving a gap of 15 mm to 20 mm between the rubber wheels and the surface of the concrete box top . During normal running conditions, these rubber wheels of the Derailment Arresters do not touch the inner roof of the concrete box maintaining the gap. When a running wheel of a bogie tends to leave the rail (i.e. when a running wheel climbs or wheel axle rises leading to derailment), before the flange clears the rail top, the rubber wheel of the Derailment Arresters attached over that erring bogie wheel touches the roof’s bottom inside the box. The touching of the rubber wheel of the Derailment Arrester with the bottom of the roof of the concrete box triggers the controlling computers to control the train’s speed and running. The erring running wheel will be pushed back to the rail guidance in the process and not allowed to leave the rail guidance, thus avoiding the occurrence of derailing. The bogie, if defective, could be removed at the next traverser.

 

2.     SWING ARRESTERS

The suspender rods, that connect the hanging cars traveling under the concrete box with bogies running inside the box on rails, move though two parallel slots continuously provided in the floor of the box. The hinge or pivot mechanism of the suspender rods are allowed to swing to a limited extent while negotiating curves and under normal lateral wind forces. In order to mitigate the swing beyond the accepted limit, Swing Arresters are attached to the suspenders. The Swing Arresters, which are instrumented solid rubber wheels, are attached to the suspenders leaving a gap between the rubber wheels and the bottom surface of the concrete box. These Swing Arresters works are similar to the Derailment Arresters. When the swing is beyond the permissible limit, the rubber wheel touches the concrete surface which triggers corrective action to control the swing by reducing the speed or stopping the system.

 

3.     ANTI-COLLISION DEVICE (ACD) NETWORK

An extensive ACD network has been developed by KRCL for the use of intercity rail operation. SBM technology uses the ACD network concept. The ACD network is intelligent microprocessor-based equipment consisting of a Central Processing Unit and a Global Positioning System with a digital radio modern communication system. The components of the ACD network are located in the front and last coaches of every train and in stations. All these components in the ACD network exchange information among them and automatically take decisions to prevent collisions. SBM has the ACD network, and bogie-mounted disc, regenerative, and mechanical brakes to prevent any collision. Even if all these systems fail, the impact of collision will be taken by the under-frames of the bogies running in the overhead concrete box. Passenger coaches, which are hanging from the bogies are just subjected to swing in longitudinal direction, the intensity of which depends on the severity of the collision.

 

4.     EMERGENCY EVACUATION OF PASSENGER COACHES

The electrical equipment, driving motors, and other probable sources of fire hazard are located in the over-head concrete box, away from the passenger coaches. Any fire related to the electrical equipment is restrained to the concrete box. If there is any smoke, it will rise above and away from the passengers in the cars, thereby avoiding asphyxiation, the main reason of deaths in transit cars.In the case of a passenger car to be evacuated and it could not be run to the nearest station for emergency evacuation, the following additional facilities are provided for emergency evacuation of passenger coaches:

 Bring another passenger coach on other track, and shift the passengers from the problem coach to that car via extension walkways connecting the two 22 coaches.Use emergency sliding chutes, as in an aircraft, provided at either end of each passenger coach to evacuate passengers to the ground.

 

Comments

Popular posts from this blog

POLLUTION CONTROL & PUBLIC AWARENESS

IMPACTS of URBANIZATION on ENVIRONMENT

SKYBUS:The EMERGING Technology (Intro)